JOURNAL OF APPROXIMATION THEORY 3, 59-65 (1970)

Best Approximate Solutions of Nonlinear Differential Equations

Myron S. Henry

Department of Mathematics, Montana State University Bozeman, Montana 59715

Received July 3, 1969

1. INTRODUCTION

We consider best approximating the solution to

$$L[y] \equiv a(x) y'' + \sum_{i=1}^{n} F_i(x, y, y') + G(x, y, y') = h(x)$$
(1)

with initial conditions

$$y(0) = \beta_0, \quad y'(0) = \beta_1$$
 (2)

by polynomials $p_k(x)$, in the sense that

$$||L[y(x)] - L[p_k(x)]|| = \sup_{0 \le x \le c} |h(x) - L[p_k(x)]|$$
(3)

is a minimum.

Problems of this type have been considered by many, see [3, 4, 5, 6]. The results of this paper generalize results in [3, 4].

2. The Operator L

We assume that (1) satisfies the following conditions:

(i) The functions $F_i(x, y, y')$ and G(x, y, y') are continuous at all points (x, y, y') of $[0, c] x \mathbb{R}^2$, $1 \le i \le n$.

(ii) The functions a(x) and h(x) are continuous on [0, c].

(iii) There exist functions u(x) and $\phi(y, y')$ such that u(x) is bounded and not zero on a countable set contained in [0, c], $\phi(y, y')$ is continuous at

HENRY

all points (y, y') of R^2 , $\phi(y, y') = 0$, if and only if, y = 0 or y' = 0, and for some α satisfying (v) below,

$$|G(x, y, y')| \ge r^{\alpha} |u(x)\phi(y/r, y'/r)|$$

for every $r \ge 1$.

(iv) There exist functions $M_i(x, y, y')$ which are continuous at all points (x, y, y') of $[0, c] x R^2$, and which for every $r \ge 1$, satisfy

$$|F_i(x, y, y')| \leqslant r^{\alpha_i} \left| M_i\left(x_{\tilde{s}}, \frac{y}{r}, \frac{y'}{r}\right) \right|$$

for some α_i , $1 \leq i \leq n$.

(v) The constant α in (iii) is such that $\alpha > \max(1, \alpha_1, ..., \alpha_n)$.

Nonlinear operators satisfying conditions (i)–(v) are numerous. For example, let

$$L[y] \equiv y'' + f(x)[(y')^2/y^2 + 1] + g(x) y^{4/3}(y')^2 e^{(1/y^2 + 1)},$$

where f(x) and g(x) are continuous on [0, c], and g(x) is not identically zero. Then

$$F_1(x, y, y') = f(x)[(y')^2/y^2 + 1],$$

$$G(x, y, y') = g(x) y^{4/3}(y')^2 e^{1/y^2 + 1},$$

$$M_1(x, y, y') = F_1(x, y, y'), \quad u(x) = g(x),$$

and

$$\phi(y, y') = y^{4/3}(y')^2.$$

The constant $\alpha_1 = 2$, and $2 < \alpha \le 10/3$.

Also, the operators

$$L[y] \equiv y' + \sum_{i=1}^{n} a_i(x) y^i$$

and

$$L[y] \equiv y'' + b_1(x) y' + b_2(x) y + \sum_{i,j=0}^{m,n} a_{ij}(x) y^i(y')^j, \quad i+j \ge 2$$

satisfy conditions (i)-(v), see [3, 4].

3. THE EXISTENCE OF MINIMIZING POLYNOMIALS

We now establish, for each $k \ge 1$, the existence of a polynomial of degree k which satisfies (2) and minimize, (3). The following Lemma will be useful in proving this result.

LEMMA. Let
$$S_1 = \{(c_0, c_1) \mid c_0^2 + c_1^2 \leq 1\}$$
, and
 $S_2 = \{(c_2, ..., c_k) \mid c_2^2 + \cdots + c_k^2 = 1\}$

If

$$p_k(x) = c_0 + c_1 x + c_2 x^2 + \cdots + c_k x^k,$$

then

$$\min_{S_1\times S_2} \sup_{0\leqslant x\leqslant c} |u(x)\phi(p_k,p_k')| = \sigma > 0.$$

Proof. Let $f(c_0, c_1, ..., c_k) = \sup_{0 \le x \le c} |u(x) \phi(p_k, p_k')|$. Then f is a continuous function on the compact set $S_1 \times S_2$. Suppose that $f(c_0^*, ..., c_k^*) = \sigma$ is the minimum value of f on $S_1 \times S_2$. If $\sigma = 0$, then from (iii),

$$\phi[p_k^*, (p_k^*)] = 0$$
 on a countable set,

where

$$p_k^*(x) = c_0^* + c_1^*x + \cdots + c_k^*x^k.$$

Therefore, either $p_k^*(x) \equiv 0$ or $(p_k^*)'(x) \equiv 0$. This contradicts the linear independence of $\{1, x, x^2, ..., x^k\}$. Therefore, $\sigma > 0$.

THEOREM 1. Let (1) satisfy conditions (i)–(v). Then there exists a linear combination $p_k(x)$ of $\{1, x, x^2, ..., x^k\}$ such that (2) is satisfied, and such that (3) is minimized among all sums of this type.

Proof. It is clear that every $p_k(x)$ of the type considered here, must be of the form

$$p_k(x) = \beta_0 + \beta_1 x + c_2 x^2 + \cdots + c_k x^k.$$

According to Young's criterion ([2], p. 156), it is sufficient to show that

$$\|L[p_k(x)]\| \leqslant M \tag{4}$$

implies that $c_2^2 + c_3^2 + \cdots + c_k^2 \leq N$, where *M* and *N* are positive constants which are independent of the c_j 's. Inequality (4) implies that

$$|G(x, p_k, p_k')| \leq M + |a(x)| |p_k''| + \sum_{i=1}^n |F_i(x, p_k, p_k')|$$

HENRY

Suppose that $|a(x)| \leq A$ on [0, c]. Let $r^2 = c_2^2 + c_3^2 + \cdots + c_k^2$, and assume that $r^2 \geq \max(1, \beta_0^2 + \beta_1^2)$. Then (iii) and (iv) imply that

$$|r^{\alpha}| u(x)| |\phi(p_k/r, p_k'/r)| \leq M + rA |p_k''/r| + \sum_{i=1}^n r^{\alpha_i} |M_i(x, p_k/r, p_k'/r)|.$$

Therefore, the Lemma and properties (iii) and (iv) imply that

$$r^{lpha}\sigma\leqslant M+rAP+\sum_{i=1}^{n}r^{lpha_{i}}K_{i}$$
, (5)

where $|p_k^{\prime\prime}(x)/r| \leq P$, and $|M_i(x, p_k/r, p_k^{\prime\prime}/r)| \leq K_i$, $0 \leq x \leq c$. We note that P and K_i are positive constants which are independent of the c_i 's.

Because of (v), we may write α in the form $\alpha = \alpha^* + \epsilon$, where $\alpha^* \ge \max(1, \alpha_1, ..., \alpha_n)$, and where $\epsilon > 0$. Therefore, from (5) we have that

$$r^{\epsilon} \leq M/r^{\alpha^{*}} + AP/r^{\alpha^{*}-1} + \sum_{i=1}^{n} \frac{K_{i}}{r^{\alpha^{*}-\alpha_{i}}}$$
(6)

Since $r \ge 1$, inequality (6) implies that $r^{\epsilon} \le N^*$, where N^* is independent of the c_j 's. Therefore,

$$r^2 \leq \max[1, \beta_0^2 + \beta_1^2, (N^*)^{2/\epsilon}] = N,$$

completing the proof.

4. CONVERGENCE OF SEQUENCES OF APPROXIMATING POLYNOMIALS

In order to arrive at the concluding theorem of this paper, we need an intermediate theorem. First, if $\bar{h} = (h_1, h_2)$, then $\|\bar{h}\|_a = |h_1| + |h_2|$.

THEOREM 2. Let $\overline{W} = (w_1, w_2)$, $\overline{F}(x, \overline{W}) = [f_1(x, w_1, w_2), f_2(x, w_1, w_2)]$, and let $\{\overline{F}_k(x, \overline{W})\}$ be a sequence of functions mapping $[0, c] \times \mathbb{R}^2$ into \mathbb{R}^2 such that

$$\lim_{k\to\infty} \|\overline{F}_k(x,\,\overline{W}) - \overline{F}(x,\,\overline{W})\|_a = 0,$$

uniformly on every compact subset of $[0, c] \times R^2$. Let $\overline{W}_k(x)$ be a solution of

$$\overline{W}' = \overline{F}_k(x, \overline{W}), \qquad \overline{W}(0) = (\beta_0, \beta_1)$$

on [0, c].

If W(x) is the unique solution of

$$\overline{W}' = \overline{F}(x, \overline{W}), \qquad \overline{W}(0) = (\beta_{\theta}, \beta_{1})$$

over [0, c], then

$$\lim_{k\to\infty} \|\overline{W}_k(x) - \overline{W}(x)\|_a = 0,$$

uniformly for $0 \leq x \leq c$.

The proof of this theorem is essentially that given in [1] and is omitted. We now state and prove the main theorem of this section.

THEOREM 3. Suppose that there is a unique solution y(x) over [0, c], to (1) and (2), with $a(x) \equiv 1$. If, for $k = 1, 2, ..., p_k(x)$ is a polynomial of degree k which satisfies (2) and minimizes (3), then $p_k(x)$, $p_k'(x)$, and $p_k''(x)$ converge uniformly throughout [0, c] to y(x), y'(x), and y''(x), respectively, as $k \to \infty$.

Proof. By an extension of the Weierstrass theorem, there exists a polynomial $q_k(x)$ of degree k, k = 1, 2, ..., such that

$$q_k^{(j)}(0) = y^{(j)}(0), \quad j = 0, 1, \text{ and such that}$$
$$\lim_{k \to \infty} q_k^{(j)}(x) = y^{(j)}(x), \quad j = 0, 1, 2,$$
(7)

uniformly over [0, c]. Therefore,

 $|| L[y(x)] - L[p_k(x)]|| \leq || L[y(x)] - L[q_k(x)]||.$ (8)

But

$$L[y(x)] - L[q_k(x)] = y'' - q_k'' + \sum_{i=1}^n [F_i(x, y, y') - F_i(x, q_k, q_k')] + G(x, y, y') - G(x, q_k, q_k').$$

Thus,

$$\| L[y(x)] - L[q_k(x)] \| \leq \| y'' - q_k'' \| + \sum_{i=1}^n \| F_i(x, y, y') - F_i(x, q_k, q_k') \| + \| G(x, y, y') - G(x, q_k, q_k') \|.$$

Therefore, (i) and (7) imply that

$$\lim_{k \to \infty} \| L[y(x)] - L[q_k(x)] \| = 0,$$
(9)

uniformly over [0, c].

Let

$$L[y(x)] - L[p_k(x)] = \epsilon_k(x).$$
(10)

HENRY

Then (8) and (9) imply that

$$\lim_{k\to\infty}\epsilon_k(x)=0,\tag{11}$$

uniformly over [0, c]. The system (1) and (2) may be written as

$$y'' = h(x) - \sum_{i=1}^{n} F_i(x, y, y') - G(x, y, y'),$$

$$y(0) = \beta_0, \qquad y'(0) = \beta_1.$$

This system is equivalent to the vector problem

$$\overline{W}' = \overline{F}(x, \overline{W}), \qquad \overline{W}(0) = (\beta_0, \beta_1),$$
 (12)

where $\overline{W} = (w_1, w_2)$, and where

$$\overline{F}(x, \overline{W}) = \left[w_2, h(x) - \sum_{i=1}^n F_i(x, w_1, w_2) - G(x, w_1, w_2)\right].$$

From (10) we have that $p_k(x)$ is a solution to the differential system

$$y'' = h(x) - \sum_{i=1}^{n} F_i(x, y, y') - G(x, y, y') - \epsilon_k(x),$$

$$y(0) = \beta_0, \qquad y'(0) = \beta_1.$$

This system is equivalent to the vector problem

$$\overline{W}' = \overline{F}_k(x, \ \overline{W}), \qquad \overline{W}(0) = (\beta_0, \beta_1), \tag{13}$$

where

$$\overline{F}_k(x, \overline{W}) = \left[w_2, h(x) - \sum_{i=1}^n F_i(x, w_1, w_2) - G(x, w_1, w_2) - \epsilon_k(x)\right].$$

It follows from (11), (12), and (13) that

$$\lim_{k\to\infty} \|\overline{F}(x,\overline{W}) - \overline{F}_k(x,\overline{W})\|_a = 0.$$

Therefore, by Theorem 2, we conclude that

$$\lim_{k \to \infty} |y(x) - p_k(x)| + |y'(x) - p_k'(x)| = 0, \quad 0 \le x \le c.$$
 (14)

But

$$y'' - p_k'' = \epsilon_k(x) + \sum_{i=1}^n [F_i(x, p_k, p_k') - F_i(x, y, y')] + G(x, p_k, p_k') - G(x, y, y').$$

Therefore, (11) and (14) imply that

$$\lim_{k\to\infty}|y''(x)-p_k''(x)|=0, \quad 0\leqslant x\leqslant c,$$

completing the proof.

REFERENCES

- 1. W. A. COPPEL, "Stability and Asymptotic Behavior of Differential Equations," D. C. Heath and Co., Boston, Mass., 1965.
- 2. P. J. DAVIS, "Interpolation and Approximation," Blaisdell Publishing Company, New York, 1963.
- 3. M. S. HENRY, A best approximate solution of certain nonlinear differential equations, SIAM J. Numer. Anal. 6 (1967), 143-148.
- 4. R. G. HUFFSTUTLER AND F. M. STEIN, The approximate solution of certain nonlinear differential equations, *Proc. Amer. Math. Soc.* 19 (1968), 998-1002.
- 5. W. H. McEwen, Problems of closest approximation connected with the solution of linear differential equations, *Trans. Amer. Math. Soc.* 33 (1931), 979–997.
- 6. F. M. STEIN AND KENNETH F. KLOPFENSTEIN, Approximate solutions of a system of differential equations, J. Approx. Theory 1 (1968), 279-292.